
Critical behaviour of 3D systems with long-range correlated quenched defects

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 L399

(http://iopscience.iop.org/0305-4470/32/36/102)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) L399–L405. Printed in the UK PII: S0305-4470(99)05871-0

LETTER TO THE EDITOR

Critical behaviour of 3D systems with long-range correlated
quenched defects

V V Prudnikov and A A Fedorenko
Department of Theoretical Physics, Omsk State University 55a, Pr. Mira, 644077, Omsk, Russia

E-mail: prudnikv@univer.omsk.su

Received 9 July 1999, in final form 27 July 1999

Abstract. A field-theoretic description of the critical behaviour of systems with quenched defects
obeying power law correlations∼|x|−a for large separationsx is given. Directly, for three-
dimensional systems and for different values of the correlation parameter, 26 a 6 3, a
renormalization analysis of the scaling function in the two-loop approximation is carried out, and
the fixed points corresponding to the stability of various types of critical behaviour are identified.
The obtained results essentially differ from results evaluated by a doubleε, δ-expansion. The
critical exponents in the two-loop approximation are calculated with the use of the Padé–Borel
summation technique.

In recent years, much effort has been devoted to investigating the critical behaviour of solids
containing quenched defects. In most papers considerations have been restricted to the case
of point defects with small concentrations so that the defects and corresponding random fields
have been assumed to be Gaussian distributed andδ-correlated.

For the first time in the work of Weinrib and Halperin (WH) [1] they have been offered
a model of the critical behaviour of a disordered system in which the correlation function of
the random local transition temperatureg(x− y) = 〈〈Tc(x)Tc(y)〉〉 − 〈〈Tc(x)〉〉2 falls off with
distance as a power law∼|x − y|−a. They showed that fora > d long-range correlations
are irrelevant and the usual short-range Harris criterion [2] 2− dνo = αo > 0 of influence of
δ-correlated point defects is realized, whered is the spatial dimension, andνo andαo are the
correlation-length and the specific-heat exponents of the pure system. Fora < d the extended
criterion 2−aνo > 0 of the influence of disorder on the critical behaviour was established. As
a result, a wider class of disordered systems, not only the three-dimensional (3D) Ising model
with δ-correlated point defects, can be characterized by a new type of critical behaviour. So,
for a < d a new long-range (LR) disorder stable fixed point (FP) of the renormalization group
recursion relations for systems with a number of components of the order parameterm > 2
was discovered. The critical exponents were calculated in the one-loop approximation using
a double expansion inε = 4− d � 1 andδ = 4− a � 1. In the casem = 1 the accidental
degeneracy of the recursion relations in the one-loop approximation did not permit them to find
LR disorder stable FP, but a change in critical behaviour of the model from the short-range (SR)
to the LR-correlation type was predicted forδ > δc = 2(6ε/53)1/2. Korzhenevskiiet al [3]
proved the existence of the LR disorder stable FP for the one-component WH model and also
found characteristics of this type of critical behaviour. Also, they considered a very interesting
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Figure 1. Regions of the various types of critical behaviour, which have been determined: (a) in
[1] on the basis of the doubleε, δ-expansion; (b) in the present paper with use of the field-theoretic
description in a two-loop approximation for the 3D WH model; (c) in the present paper taking into
consideration the higher orders of approximation.

model of the critical behaviour of crystals with LR correlations caused by point defects with
degenerate internal degrees of freedom [3,4].

The models with LR-correlated quenched defects present both theoretical interest from the
possibility of predicting new types of critical behaviour in disordered systems and experimental
interest from the possibility of realizing RL-correlated defects in orientational glasses [5] and
disordered solids containing fractal-like defects [3]. However, numerous investigations of pure
and disordered systems performed with the use of the field-theoretic approach show that the
predictions made in the one-loop approximation, especially on the basis of theε-expansion, can
differ strongly from the real critical behaviour [6–9]. Therefore, the map of regions with the
various types of critical behaviour received for the WH model on the basis ofε, δ-expansion [1]
(figure 1(a)) may not correspond to the critical behaviour of the 3D WH model for different
values ofm anda. In this case the results for the models with LR correlated defects received
with the use ofε, δ-expansion [1, 3, 4, 10–12] must be corrected. To shed light on this question
and to determine more accurately the dependence of the critical behaviour on the number
of components of the order parameterm and the values of correlation parametera, we have
constructed a field-theoretical description of the 3D WH model in the two-loop approximation
for the values ofa in the range 26 a 6 3.
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Figure 2. Graphs (a) that correspond to verticesu, v andw; (b) that, in addition, take into
consideration the comparison with other works, usingε, δ-expansion, corresponds to verticesu,
v andw.

The effective Hamiltonian of the WH model after using the replica trick is given by

Heff =
n∑
α=1

∫
ddx

[
1

2
(r0φ

2
α + (∇φα)2) +

u0

4!
(φ2
α)

2

]
−

n∑
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∫
ddx ddy g(x− y)φ2

α(x)φ
2
β(y)

(1)

whereφ2
α =

∑m
i=1 φ

2
iα; φiα is an (n × m)-component order parameter. The properties of

the original disordered system are obtained in the replica number limitn → 0. The Fourier
transformation of the interaction vertexg(x) ∼ x−a givesg(k) = v0 + w0k

a−d for small k.
g(k) must be positive definite, therefore ifa > d, then thew term is irrelevant,v0 > 0 and
Heff (1) corresponds to the model with SR-correlated defects, while ifa < d, then thew term
is dominant at smallk andw0 > 0.

As is known, in the field-theoretic approach [13] the asymptotic critical behaviour of
systems in the fluctuation region are determined by the Callan–Symanzik renormalization-
group equation for the vertex parts of the irreducible Green functions. To calculate theβ

functions and the critical exponents as functions of the renormalized interaction verticesu,
v andw (scalingγ functions) appearing in the renormalization-group equation, we used
the standard method based on the Feynmann diagram technique and the renormalization
procedure [14]. The three types of interactions can be represented graphically as in figure 2(a).
When we considered a diagrammatic representation of the two-point vertex function0(2), three
types of four-point vertex functions0(4)i and a two-point function with theφ2 insertion vertex
function0(1,2) in the two-loop approximation the diagrams were integrated numerically in
d = 3 and with the values of parametera determining the momentum dependence of thew

interaction in the range 26 a 6 3 with changes through the step1a = 0.01. Details will be
presented in a separate publication [15]. Unlike the works usingε, δ-expansion we took into
consideration the graphs of the form (figure 2(b)), contributions of which are increased when
thea values are removed froma = 3.

As a result, we obtained theβ andγ functions in the two-loop approximation in the form
of the expansion series in renormalized verticesu, v andw. Because of space restrictions
presenting the coefficients of these series for different values ofa we will only give here the
obtainedβ andγ functions fora = 2 (the case witha = 2 corresponds to a system of straight
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lines of impurities or straight dislocation lines of random orientation in a sample):

βu(u, v,w) = −u + u2 − 3

2
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(2)

The series (2) are normalized by a standard change of variables [7, 8]u → 6u/(m + 8)J ,
v → v/32J , w → w/32J , so that the coefficients of the termsu, u2 andv, v2 in βu andβv
become 1 in modulus, whereJ = ∫ ddq/(q2 + 1)2 is the one-loop integral.

The nature of the critical behaviour is determined by the existence of a stable FP satisfying
the system of equations

βi(u
∗, v∗, w∗) = 0 (i = 1, 2, 3). (3)

It is well known that perturbation series are asymptotically convergent, and the vertices
describing the interaction of the order parameter fluctuations in the fluctuating regionr → 0
are large enough so that expressions (2) cannot be used directly. For this reason, to extract
the required physical information from the obtained expressions, we employed the Padé–
Borel approximation of the summation of asymptotically convergent series extended to the
multiparameter case [9,16]. We used the [2/1] approximant to calculate theβ functions in the
two-loop approximation.

However, the analysis of the series coefficients for theβw function has shown that the
summation of this series is fairly poor, which resulted in the absence of FP withw∗ 6= 0, for
example, in the casem = 1 for a < 2.93, in the casem = 2 for a < 2.67 etc. Dorogovtsev
found the symmetry of the scaling function for the WH model in relation to the transformation
(u, v,w)→ (u, v, v +w) [10] which gives the possibility of investigating the problem of FP
existence withw∗ 6= 0 in the variables(u, v, v+w). In this case our investigations have shown
the existence of FPs withw∗ 6= 0 in the whole region where the parametera changes.

We have found three types of FPs in the physical region of parameter spaceu∗, v∗, v∗ +
w∗ > 0 for different values ofm anda. Type I corresponds to the FP of a pure system
(u∗ 6= 0, v∗, w∗ = 0), type II is a SR-disorder FP(u∗, v∗ 6= 0, w∗ = 0) and type III
corresponds to LR-disorder FPs(u∗, v∗, w∗ 6= 0). The type of critical behaviour of this
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Table 1. Stable fixed points of the 3D WH model from two-loop expansions.

m = 1 m = 2 m = 3

a u∗ v∗ w∗ + v∗ u∗ v∗ w∗ + v∗ u∗ v∗ w∗ + v∗

3.1 2.383 38 0.551 64 0.551 64 1.564 69 0.004 16 0.004 16 1.520 97 0.000 00 0.000 00
3.0 2.383 38 0.222 93 0.551 64 1.564 69 0.004 16 0.004 16 1.520 97 0.000 00 0.000 00
2.9 2.598 04 0.318 90 0.681 14 2.090 01 0.113 86 0.400 38 1.520 97 0.000 00 0.000 00
2.8 2.779 27 0.401 53 0.782 99 2.176 77 0.135 36 0.443 59 1.957 70 0.082 98 0.345 50
2.7 2.940 31 0.474 87 0.867 57 2.267 78 0.159 23 0.486 12 2.017 46 0.093 46 0.370 04
2.6 3.086 45 0.540 84 0.939 16 2.360 58 0.184 57 0.526 33 2.086 99 0.109 22 0.400 05
2.5 3.219 83 0.600 35 0.999 72 2.496 43 0.234 42 0.596 51 2.155 85 0.125 35 0.426 28
2.4 3.340 78 0.653 74 1.049 98 2.618 18 0.280 94 0.653 34 2.220 47 0.140 74 0.446 51
2.3 3.448 13 0.700 82 1.089 80 2.725 20 0.323 44 0.697 60 2.308 01 0.169 10 0.483 02
2.2 3.538 99 0.740 92 1.118 25 2.815 01 0.361 15 0.729 09 2.392 98 0.200 79 0.516 96
2.1 3.608 14 0.772 63 1.133 40 2.883 05 0.392 93 0.746 72 2.458 69 0.228 77 0.537 59
2.0 3.646 87 0.793 47 1.131 89 2.922 06 0.417 10 0.748 43 2.499 45 0.251 61 0.543 64

disordered system for each value ofm anda is determined by the stability of the corresponding
FP. The requirement that the FP be stable reduces to the condition that the eigenvalues of the
matrix

Bi,j = ∂βi(u
∗
1, u
∗
2, u
∗
3)

∂uj
(4)

lie in the right-hand side complex half-plane.
Values of the stable FPs obtained for the most interesting values of the number of order-

parameter componentsm and 26 a 6 3 are presented in table 1. As one can see from this
table, for the Ising model(m = 1) the LR-disorder FP is stable for values ofa in the whole
investigated range. The additional calculations for 3< a < 4 have shown that only FP II is
stable in this range. Fora = 3 FP values for verticesu andg(k) are equal,u∗ = 2.383 38
andg∗ = v∗ +w∗ = 0.551 64, and correspond to the SR-disordered Ising model FP, although
w∗ 6= 0. Similarly, form = 1 anda = 3 the LR disorder is marginal, and the critical
behaviour of the WH model, as that of the SR-disordered Ising model, is characterized by
the same critical exponents (table 2). The critical behaviour of theXY -model (m = 2) is
determined by the LR-disorder FP fora 6 2.96 and the SR-disorder FP fora > 2.96. The
Heisenberg model(m = 3) is characterized by a change in the types of critical behaviour from
the LR-disorder type (III) fora 6 2.85 to the pure type (I) fora > 2.85. Figure 1(b) shows
regions of the various types of critical behaviour of the WH model, which we obtained in the
two-loop approximation. The large change in the picture indicates that the correspondence
between the WH results and our calculations in the two-loop approximation is weak.

However, the results which we received for the disorderedXY -model must be corrected.
We believe that in the higher field-theory orders of approximationk the critical behaviour of the
XY -model will be determined by the FP of pure type (I) fora(k)c < a, but not by the SR-disorder
FP (II), obtained in the two-loop order. Here,a(k)c is a marginal value fora in thekth order of
approximation, for which disorder is irrelevant (a(6)c ' 2/νo = 2.99 withνo = 0.669 [17] for
m = 2). Two facts indicate this, such as the weak stability of the SR-disorder FP revealed for
2.96< a < 4 and thata(2)c = 3 formc = 2.0114. In the higher orders of approximation the
marginal value ofmc can be found with the use of the Harris criterion [2]dνo(mc) − 2 = 0,
and asνo = 0.669 [17] form = 2, thenmc < 2. Therefore, we believe that the corrected
picture of the regions of various types of critical behaviour of the model with LR-correlated
defects will be represented by figure 1(c).
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Table 2. Critical exponents of the 3D WH model from two-loop expansions.

m = 1 m = 2 m = 3

a 2/a η ν z η ν z η ν z

3.1 0.0327 0.6715 2.1712 0.0288 0.6642 2.0000 0.0283 0.6960 2.0217
3.0 0.6667 0.0327 0.6715 2.1712 0.0288 0.6642 2.0000 0.0283 0.6960 2.0217
2.9 0.6897 0.0304 0.6813 2.2120 0.0248 0.7141 2.1315 0.0283 0.6960 2.0217
2.8 0.7143 0.0270 0.6889 2.2486 0.0212 0.7190 2.1510 0.0179 0.7600 2.1128
2.7 0.7407 0.0227 0.6950 2.2837 0.0166 0.7240 2.1736 0.0137 0.7632 2.1269
2.6 0.7692 0.0176 0.7002 2.3184 0.0112 0.7692 2.1988 0.0084 0.7682 2.1443
2.5 0.8000 0.0118 0.7046 2.3532 0.0035 0.7378 2.2338 0.0025 0.7727 2.1633
2.4 0.8333 0.0055 0.7083 2.3879−0.0050 0.7452 2.2684−0.0040 0.7763 2.1827
2.3 0.8696 −0.0012 0.7114 2.4215−0.0138 0.7513 2.3013−0.0125 0.7835 2.2078
2.2 0.9091 −0.0081 0.7137 2.4524−0.0226 0.7558 2.3301−0.0218 0.7905 2.2315
2.1 0.9524 −0.0147 0.7151 2.4780−0.0307 0.7588 2.3522−0.0303 0.7952 2.2514
2.0 1.0000 −0.0205 0.7155 2.4949−0.0371 0.7599 2.3649−0.0370 0.7975 2.2644

Finally, we have calculated the static critical exponents for the WH model (table 2),
received from the resummed by the generalized Padé–Borel methodγ functions in the
corresponding stable FPs:η = γφ(u∗, v∗, w∗), ν = [2 + γφ2(u∗, v∗, w∗)− γφ(u∗, v∗, w∗)]−1.
Also, we have found by the method used in [8] the dynamic scaling functionγλ and calculated
the values of the dynamic exponentz = 2 + γλ(u∗, v∗, w∗) on the basis of the resummedγλ
function (table 2). As an example, fora = 2 the receivedγλ function is given by

γλ(u, v,w) = 1

4
v + 0.314 088w + 0.226 777

(m + 2)

(m + 8)2
u2 +

23

432
v2 − 0.0764w2

−0.092 593
(m + 2)

(m + 8)
uv + 0.123 604

(m + 2)

(m + 8)
uw − 0.011 315vw. (5)

The comparison of the exponentν values and ratio 2/a from table 2 shows the violation
of supposed in [1] on the basis of some heuristic arguments as exact the relationν = 2/a.
The revealed difference is caused by the use in our work of a more accurate field-theoretic
description in the higher orders of approximation for the 3D system directly together with
methods of series summation. Also, these distinctions can be explained by the application for
calculations of the concrete numerical values of parametera and taking into consideration the
graphs of the form shown in figure 2(b), thrown away when theε, δ-expansion is used, but
contributions of which are increased when the valuesa are removed froma = 3. Of course,
there are errors in the present consideration determined by the accuracy of series summation
for theβ andγ functions. However, comparison of the exponent values for the SR-disorder
Ising model, calculated with the use of the Padé–Borel method in [6, 7] in the two-loop and
four-loop approximations respectively, shows that their differences are not more than 0.02. At
the same time, in our workν− 2/a depends on the values ofa andm and has the value 0.284,
as example, fora = 2 andm = 1, which is considerably larger.

In closing, we hope that the features of the critical behaviour of the WH model revealed
in our paper will stimulate the organization of experimental works in real disordered systems
with long-range correlated defects like orientational glasses and solids with fractal-like defects.
Also, computational methods can be applied to simulate disordered systems with straight lines
of impurities of random orientation in a sample (a = 2). The received values of exponents can
be used for an explanation of the results of a computer simulation of the 3D disordered Ising
model [18] at impurity concentrations between the threshold of impurity percolation and the
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spin-percolation threshold, in which the fractal-like behaviour of impurity-extended structures
and the competition between impurity-percolating and spin-percolating clusters are possible.
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